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SYNOPSIS. The flexible phenotypes of birds and mammals often appear to represent adjustments to alleviate
some energetic bottleneck or another. By increasing the size of the organs involved in digestion and assim-
ilation of nutrients (gut and liver), an individual bird can increase its ability to process nutrients, for example
to quickly store fuel for onward flight. Similarly, an increase in the exercise organs (pectoral muscles and
heart) enables a bird to increase its metabolic power for sustained flight or for thermoregulation. Reflecting
the stationary cost of organ maintenance, changes in the size of any part of the ‘‘metabolic machinery’’ will
be reflected in Basal Metabolic Rate (BMR) unless changes in metabolic intensity also occur. Energetic
bottlenecks appear to be set by the marginal value of organ size increases relative to particular peak re-
quirements (including safety factors). These points are elaborated using the studies on long-distance mi-
grating shorebirds, especially red knots Calidris canutus. Red knots encounter energy expenditure levels
similar to experimentally determined ceiling levels of ca. 5 times BMR in other birds and mammals, both
during the breeding season on High Arctic tundra (probably mainly a function of costs of thermoregulation)
and during winter in temperate coastal wetlands (a function of the high costs of processing mollusks, prey
poor in nutrients but rich in shell material and salt water). During migration, red knots phenotypically
alternate between a ‘‘fueling [life-cycle] stage’’ and a ‘‘flight stage.’’ Fueling red knots in tropical areas may
encounter heat load problems whilst still on the ground, but high flight altitudes during migratory flights
seem to take care of overheating and unacceptably high rates of evaporative water loss. The allocation
principles for the flexible phenotypes of red knots and other birds, the costs of their organ flexibility and
the ways in which they ‘‘organize’’ all the fast phenotypic changes, are yet to be discovered.

INTRODUCTION

Despite a rather standard design (toothless bill,
feather coat, light bones, wings and large pectoral
muscles), birds show a staggering inter- and intraspe-
cific variation in life histories. What is of special con-
cern in this paper is a mechanistic yet evolutionary
understanding of the seemingly extravagant life-styles
of long-distance migrants, birds that seasonally com-
mute between ‘‘areas of reproduction’’ and ‘‘areas for
overwinter survival’’ that may be half a world apart.
Do individual birds that alternate between some of the
coldest and some of the hottest parts of the globe ever
reach the limits of vertebrate design?

Here I will examine the progress that was made over
the last decade in understanding the role of energetic
bottlenecks and other design constraints on the life-
histories of long-distance migrating and arctic breed-
ing shorebirds, mainly the large sandpipers of the
Charadriiform family Scolopacidae (Piersma et al.,
1996c). Initially, our project was inspired by the large
contrasts in the migrations of separate populations of
shorebirds such as red knots (Calidris canutus) and
aimed to provide an economic analysis of differences
in flight distance and climatic conditions encountered
(Drent and Piersma, 1990; Piersma et al., 1991a).
Upon starting the research reviewed here, I deliberate-
ly chose a focal species that was amenable to experi-
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mentation in artificial environments (red knots; see
Piersma, 1994). I also selected a species living in rel-
atively simple habitats in terms of the physical (e.g.,
thermal) and the food resource characteristics (Piersma
et al., 1993a; Wiersma and Piersma, 1994).

In the research philosophy of our, and indeed many
other laboratories, one cannot but to take ‘‘physiology
into the field’’ (Drent and Daan, 1980). Field ecolog-
ical research without due attention to the external and
internal (ecophysiological) constraints on the organ-
isms under study is bound to be evolutionarily unin-
formative. Similarly, fully controlled physiological
studies that are cut off from the messy reality of the
outdoors, even of animals with interesting life-histo-
ries, are bound only to vaguely inform ecological and
evolutionary questions (Willmer et al., 2000). George
Bartholomew got it all right when he noted in 1958:
‘‘Since an organism is inseparable from its environ-
ment, any person who attempts to understand an or-
ganism’s distribution must keep in mind that the item
being studied is neither a stuffed skin, a pickled spec-
imen, nor a dot on a map. It is not even the live or-
ganism held in the hand, caged in the laboratory, or
seen in the field. It is a complex interaction between
a self-sustaining physico-chemical system and the en-
vironment.’’ (Bartholomew, 1958).

FLEXIBLE PHENOTYPES AND LIFE HISTORY EVOLUTION

In a world where adult birds only have fixed traits,
it is relatively simple to explain these very traits. For
example, heritable variations in beak size can be linked
to measures of feeding performance and variations in
survival, and thus the evolutionary responses to direc-
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tional selection by variations in environmental condi-
tions can be understood (e.g., B. R. Grant and P. R.
Grant, 1989; P. R. Grant and B. R. Grant, 2000). Yet,
the aspects of life histories of long-distance migrants
that cry out for explanation have to do with the near-
continuous intraindividual phenotypic changes of
these birds, rather than with interindividual variation,
i.e., their phenotypic plasticity in the more narrow
sense (Fig. 1; Piersma and Lindström, 1997). Sequen-
tial occurrences in different climate zones, storage and
depletion of fuel loads, and drastic changes in plum-
age, are all aspects of the typical flexible adult phe-
notype of avian migrants. As the question of whether
such animals face energetic and other bottlenecks is
obviously connected to the flexibility of morphological
structures responsible for energy acquisition, storage
and expenditure, I will explain at some length how one
can think about avian life history structures, before
examining the existence and the role of bottlenecks in
avian annual cycles.

Any ‘‘life history’’ is written in the genes, is ex-
pressed in the phenotype, and is evolutionary evalu-
ated in the ‘‘demotype’’ (Fig. 1). The hierarchy of
‘‘life history structures’’ and their transformations are
inseparable from each other and only exist with ref-
erence to the environmental context (Ricklefs, 1991).
It is the avian phenotype that is hardest to ‘‘catch.’’ It
is composed of fixed traits (e.g., gender, beak size,
skeletal dimensions) and many flexible morphological
and behavioral traits as well (Dykstra and Karasov,
1992; Piersma and Lindström, 1997; Starck, 1999b).
Phenotypic plasticity is defined as the capacity of sin-
gle genotypes to produce a variety of phenotypes, but
is usually used with reference to the irreversible vari-
ation in fixed adult traits (e.g., Travis, 1994). This var-
iation comes about during development as a conse-
quence of variation in the environment by the action
of reaction norms (Schlichting and Pigliucci, 1998).

As will become clear below, the size of guts and
other metabolic organs provides an example of a truly
flexible adult trait. The flexible phenotype of individ-
uals (single genotype, single phenotype as far as the
fixed traits are concerned) also encompass cyclical
phenotypic variation named ‘‘life-cycles stages’’ by Ja-
cobs and Wingfield (2000). Life-cycle stages specifi-
cally refer to seasonally-structured sequences of
‘‘unique’’ phenotypes with respect to state (reproduc-
tive or not; molting or not) and appearance (nuptial
plumage or not). Both aspects of the flexible pheno-
type may be under the influence of endogenous pro-
grams, especially of the circannual clock system
(Gwinner, 1986). Whereas the phenotype is something
that one can measure on an organism independently of
the environment, the ‘‘ethotype’’ has no meaning ex-
cept in an environmental context (Ricklefs, 1991, per-
sonal communication). Ethotype would include the en-
ergy requirements of an individual as a measure of the
performance of an individual in its environment (e.g.,
Burness et al., 2001). To further explain the difference
between pheno- and ethotype, and with reference to

what will follow, Basal Metabolic Rate (BMR) would
be part of the (flexible) phenotype, whereas the daily
energy expenditure (that depends on activity patterns,
weather, degree of shelter found, etc.), would be an
expression of the ethotype.

All these quantitative phenotypic traits are likely to
be under genetic control and the fitness of their vari-
ants (the ‘‘demotypes,’’ a function of both ecological
interactions and sexual selection processes) can be
studied (Nager et al., 2000). Fitness determines which
of the competing ‘‘units of sequenced structures and
transformations’’ (i.e., organisms) will survive in na-
ture’s unending struggle (Fig. 1). Many of the design
solutions shaping life histories will result from partic-
ular allocations of resources (energy, nutrients, time,
space) and thus show great interdependence. As a con-
sequence, it will usually be very hard to study the
fitness consequences of phenotypic variants with re-
spect to single aspects directly (i.e., by way of de-
mographic studies; but see Ketterson and Nolan,
1992). Instead, a more indirect approach using opti-
mization criteria can help us understand how particular
architectural solutions shown by a particular pheno-
type may evolutionarily have come about (Arnold,
1988; Ricklefs, 1996; Kozlowski, 1999). Although
there are many constraints on phenotypic evolution
(e.g., constraints resulting from inheritance, selection
and development; Arnold, 1992), I will concentrate on
the limits imposed by design and assume that pheno-
typic traits are shaped continuously by natural selec-
tion.

ENERGETIC BOTTLENECKS AND

OTHER DESIGN CONSTRAINTS

Many authors have argued that organisms may face
energetic bottlenecks some times during their life, and
that such bottlenecks may provide major selection
pressures in life history evolution (Kendeigh, 1949;
King, 1974; King and Murphy, 1985; Goldstein, 1988;
Bryant and Tatner, 1991; Ricklefs, 1996; Bryant,
1999), including winter distribution (Root, 1988). At
some level, energy intake (Kirkwood, 1983), digestion,
absorption, transport and delivery to the organs will
always be constrained by design (Karasov, 1986; Wei-
ner, 1992), and additionally depend on the character-
istics of the food (Zwarts and Dirksen, 1990; Kersten
and Visser, 1996). The expression of a hierarchy of
bottlenecks (nicely visualized as ‘‘funnels’’ by Weiner,
1992) quite easily leads to the concept of symmor-
phosis: that the limitations in the successive parts of
this chain of energy delivering funnels are adjusted to
each other in such a way that none is more constrain-
ing than the other (Weibel et al., 1998; Weibel, 2000).

There may also be limits to the body size of the
organism. It probably depends, among other things, on
the mode and medium of transport of the organism
(Alexander, 1998). For example, marine mammals are
much larger and have much greater energy storage ca-
pacity than birds. During long-distance flights birds
may run out of fuel if favorable tailwinds are unavail-
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FIG. 1. The ‘‘life history’’ of an animal (in this case of a red knot, a long-distance migrant shorebird) can be regarded to consist of various
intragenerational stages (indicated here by the terms genotype, phenotype, and others) in the course of which the influence of environment
and time of the year increases all the time. The life history that is most successful under the environmental conditions that an animal happens
to encounter, yields the highest numbers of offspring in the next generation (i.e., the most common ‘‘demotype,’’ the life history with the
highest fitness). The sketches on the right illustrate the phenomena referred to by the genotype (chromosomes, part of a DNA sequence and
the double helix), the early phenotype (egg and freshly-hatched chick), aspects of the adult phenotype that are fixed and that are flexible
(migration from Canada to Europe versus Siberian to Africa; short- versus long-billed birds, and large- versus small-gutted birds, respectively),
including aspects of the phenotype that vary predominantly on a seasonal basis (life-cycle stages such as seasonal changes in plumage). Traits
that can only be described in relation to environmental conditions are indicated by the term ethotype (for example, a trait like daily energy
expenditure). The resulting reproductive success of such genetically instructed types is called the demotype (in this case illustrated by different
numbers of short- and long-billed birds, or of large- and small-gutted birds). The shaded part of this avian life history is the focus of this
paper.
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able, and thus experience energetic bottlenecks during
the flight part of their migration. The rate of energy
generation and expenditure may also provide bottle-
necks. Rates of heat generation and loss, and rates of
work, may simultaneously constrain organismal op-
tions. Indeed, such limitations are implicit in the con-
cept of maximum sustained working levels or ‘‘meta-
bolic ceilings’’ (Drent and Daan, 1980; Peterson et al.,
1990; Suarez, 1996; Hammond and Diamond, 1997).
Here again the question arises whether limitations in
energy intake and assimilation (central limitations) or
limits to energy expenditure (peripheral limitations) ul-
timately determine the metabolic ceiling, or whether
one would expect these opposing elements to be ex-
quisitely balanced (Hammond and Diamond, 1997). If
they are not, organisms would be designed in rather
wasteful ways.

The allocation of time to activities with different
energy cost and benefit levels may also provide a con-
straint on what animals can do. To avoid energy def-
icits, the energy gained during the portion of time
spent foraging must equal or exceed the costs incurred
by the summation of the various daily activities (Clark
and Ricklefs, 1988; Ricklefs, 1991; Tinbergen and
Verhulst, 2000).

In addition to such problems of allocation (of time,
of space, and of energy), the issue of marginal values
is critical to energetic bottlenecks (Perrin, 1992). At
the most basic level, constraints must occur because
the fitness costs of additional investments in a structure
or an activity are not outweighed by the pay-offs. For
example, the nutritional rewards of a larger or a more
effective gut may not outweigh the construction and
maintenance costs of such a gut (Sibly, 1981; Dia-
mond, 1991). Animals that spend a greater share of
the day eating than others that eat for a shorter period
may be able to lift a particular metabolic ceiling (Kvist
and Lindström, 2000), but may incur other fitness
costs. This phenomenon has been demonstrated with
respect to reproductive investments in European kes-
trel Falco tinnunculus, where greater parental effort
and energy expenditure to produce higher quality or
more offspring at some point no longer offset the fit-
ness costs to the parents themselves due to reduced
survival (Deerenberg et al., 1995; Daan et al., 1996).

The ‘‘other design constraints’’ referred to before
are of a decidedly ecophysiological, but not of an en-
ergetic character. Nevertheless, they may be intimately
related to the energetic bottlenecks discussed so far.
What I have in mind are limitations to the rates of
tissue transformation that may be necessary to accom-
modate the changing selection pressures on the etho-
type in the course of the year. In addition, Jacobs and
Wingfield (2000) envisaged that there might be con-
straints in the endocrine control systems that could
limit the speed of changes between life-cycle stages
(see also Mrosovsky, 1990), and perhaps even put a
limit on the overall complexity of life cycles.

THE CASE OF THE RED KNOT: TROPHIC AND

IMMUNOLOGICAL SPECIALIZATIONS NECESSITATING

LONG-DISTANCE MIGRATION?

The prime example in the ensuing discussions on
bottleneck phenomena in avian annual cycles is the red
knot, a large sandpiper of the scolopacid family (Piers-
ma et al., 1996c). For this species we have a sufficient
body of observations not only to describe the intra-
specific variation in annual cycles in great detail
(Piersma and Davidson, 1992), but also to formulate
hypotheses as to why individual red knots might re-
quire half a world to make a living.

Red knots weigh about 120 g when lean, to over
220 g when fully fueled up, and have a circumpolar
breeding distribution. They only breed in the most
northern and barren types of high arctic and alpine
tundra. From these polar desert tundras, different pop-
ulations migrate southwards to specific overwintering
destinations at more southern coastal areas (Piersma
and Baker, 2000). The population breeding in the Ca-
nadian Arctic (rufa) migrates as far as the subantarctic
coast of Tierra del Fuego, another (rogersi) migrates
between Chukotka Peninsula and New Zealand. Of the
two populations that will be the focus here, one breeds
on tundra in northern Greenland and northeast Canada
and winters at temperate latitudes in Western Europe
(islandica), and the other breeds in northcentral Siberia
and overwinters in the tropics of West-Africa (canu-
tus). Surprisingly, this whole flyway system may be of
post-Pleistocene origin. Studies on allozyme variation
and the sequence variation in the rapidly evolving
parts of the mitochondrial DNA suggest that red knots
survived a population bottleneck some time within the
last 30,000 yr (Baker et al., 1994; Baker and Marshall,
1997).

Nonbreeding red knots always are found in coastal
wetlands with extensive intertidal mudflats (Piersma,
1994). The scarcity of such habitats dictates that such
sites not only are ‘‘few,’’ but also ‘‘far between’’ (van
de Kam et al., 1999). Thus, the migratory travels from
breeding to wintering area and vice versa usually in-
volve a few very long-distance flights that routinely
measure more than 2,000 km, but may be up to 8,000
km long (Dick et al., 1987; Piersma and Davidson,
1992; Nebel et al., 2000).

On the tundra red knots eat a variety of surface ar-
thropods and spiders (Tulp et al., 1998). During the
rest of the year they live on a diet that largely consists
of mollusks (Prater, 1972; Piersma, 1991; Alerstam et
al., 1992; Zwarts and Blomert, 1992; Piersma et al.,
1993a, b, 1994; González et al., 1996). Red knots are
well equipped for a molluscan diet as their digestive
tract consists of a large muscular stomach for crushing
hard-shelled mollusks and an intestine that is able to
withstand the stresses of rapidly passing shell-frag-
ments (Dekinga and Piersma, 1993; Piersma et al.,
1993c, 1999b). Buried bivalves very often dominate
the diet, and red knots are most proficient in their de-
tection (Piersma et al., 1995b). Whereas snipes and
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FIG. 2. The cost of high arctic life illustrated by the daily energy expenditure of fully grown adult arctic-breeding shorebirds of different
species in the incubation phase (A) and the daily metabolizable energy intake of growing red knot chicks (B), both plotted as a function of
body mass. The interspecific data in (A) refer to daily energy expenditures based on ca. 24 hr doubly-labeled water measurements of birds
captured and recaptured on the nest (from T. Piersma et al., unpublished data); the intraspecific data on metabolizable energy intake rates in
(B) refer to energy intake rates calculated by summation of energy expenditure measured by doubly-labeled water and individual increments
in energy content (from H. Schekkerman et al., unpublished data). kmax is the allometric approximation of the absolute maximum rate of energy
turnover of fully grown birds and mammals according to Kirkwood (1983).

many small sandpipers are equipped with a bill-tip or-
gan to detect the vibrations of subsurface crawling
prey (Gerritsen and Meijboom, 1986), red knots may
be unable to feel such vibrations. Instead, they are able
to detect the presence of static objects such as mol-
lusks buried in soft sediments by the Herbst-corpuscles
in their bill-tips which may perceive pressure gradients
actively formed by the probing bill (Piersma et al.,
1998). On the tundra, red knots rely on keen eyesight
to make a living on surface arthropods.

Their food-finding specialization may explain the
use of intertidal habitats outside the breeding season,
but why would red knots be restricted to the most
northern and inhospitable tundra during breeding? Per-
haps high arctic tundra as well as open seashores rep-
resent relatively parasite- and pathogen-poor habitats
where small investments in immunomachinery suffice
(Piersma, 1997). Red knots and other high-arctic
breeding and long-distance migrating shorebirds may
be specialized in having a low capacity of, and/or al-
locating small nutritional investments to, immunocom-
petence (Piersma, 1997).

‘‘STEADY-STATE’’ ENERGETICS

The High Arctic breeding grounds

Is the thermal environment of the High Arctic
breeding grounds of red knots, and indeed most other
coastal wintering shorebird species, costly, even in
summer (Drent and Piersma, 1990), and is there evi-
dence that rates of energy expenditure impose a con-
straint on the distribution of birds or their activity? A
study on ruddy turnstones (Arenaria interpres) during
the incubation phase (Piersma and Morrison, 1994) us-
ing doubly labeled water to measure energy expendi-
ture (Speakman, 1997), showed that these 100 g shore-
birds routinely expend the equivalent of four times

their predicted BMR. This is quite close to the meta-
bolic ceiling identified by Drent and Daan (1980; and
see Kirkwood, 1983; Peterson et al., 1990; Hammond
and Diamond, 1997). Most of the variation in the en-
ergy expenditure of these turnstones was attributable
to variation in the thermal conditions, a function of air
temperature, wind and radiation.

These results were confirmed when we compiled the
doubly-labeled water measurements from 30 incubat-
ing individuals of eight shorebird species that varied
in body mass from 28–150 g (Fig. 2A). Rates of en-
ergy expenditure, especially in the smallest species,
approached kmax (the absolute maximum rate of energy
turnover according to Kirkwood, 1983). Doubly-la-
beled water data for radiomarked red knots, for which
the time budgets during measurement periods were
known, showed that foraging away from the nest on
open tundra is almost two times as costly as incubating
the four-egg clutch (T. Piersma et al., unpublished
data). Thus, probably as a consequence of the high
costs of thermoregulation when foraging away from
the nest, tundra-breeding shorebirds appear to incur
daily rates of energy expenditure that are among the
highest reported in the literature so far.

If the adult shorebirds find it costly to make a living
on the tundra in summer, what about their precocial
chicks that also have to feed in this open and exposed
habitat? We measured energy expenditure using dou-
bly-labeled water in red knot chicks growing up on the
coastal tundra of central Siberia (Tulp et al., 1998; H.
Schekkerman et al., unpublished data). To arrive at
estimates of the daily metabolized energy we added
the energy deposited in new tissue based on carcass
analyses. The daily metabolized energy scaled with
body mass to the power 0.916 (Fig. 2B; H. Schekker-
man et al., unpublished data). Variations in chick
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growth rate were correlated with thermal conditions as
well as the availability of invertebrate prey as mea-
sured by pitfall traps. The energy requirement over the
18 day prefledging period amounted to 5,285 kJ. This
is 89% above an allometric prediction based on growth
rate and fledgling mass in birds (Weathers, 1992,
1996), and is among the highest values reported to
date. During the second and third week of life the net
energy intake of red knot chicks exceeded the pre-
dicted absolute maximum rate of energy turnover for
adult birds and mammals (Fig. 2B).

Thus, red knot chicks seem to able to ‘‘break
through’’ an inferred ‘‘allometric’’ metabolic ceiling.
Which factors enable them to do so? Red knot chicks
on the Siberian tundra grow relatively fast and must
achieve high food intake rates, especially during mild
weather (H. Schekkerman et al., unpublished data).
The 24-hr daylight period is helpful as it maximizes
the potential time available for foraging. Perhaps most
importantly, the considerable cold-hardiness of red
knots during the first week of life enables them to seek
less parental brooding than temperate breeding shore-
birds species (Beintema and Visser, 1989) and thus to
further increase foraging time. Thus, adjustments in
metabolic design (cold hardiness) in combination with
particular ecological conditions (long days, accessible
surface prey) may have allowed these knots to raise
their metabolic performance above the ceiling of Kirk-
wood (1983). This begs the question why the chicks
of temperate breeding shorebirds do not increase cold
hardiness as well (e.g., by organ size and capacity ad-
justments) and thus decrease the risk of death during
cold days (cf., Visser and Ricklefs, 1995; Visser,
1998)?

Wintering at temperate latitudes

These studies on energetics of shorebirds on the
breeding grounds indicate that the costs of thermoreg-
ulation loom large in their energy budgets. As shore-
birds always live exposed in open habitats with little
scope for behavioral thermoregulation (e.g., the selec-
tion of favorable microhabitats), it seems likely that
the costs of thermoregulation would be an important
determinant of energy expenditure year-round (Piers-
ma et al., 1991a). Using heated taxidermic mounts un-
der many conditions in the field, Wiersma and Piersma
(1994) derived a series of habitat-specific equations to
predict maintenance requirement (i.e., BMR plus the
additional cost of thermoregulation when standard op-
erative temperatures are below the lower critical tem-
perature; see Bakken, 1992) from three standard
weather variables (i.e., air temperature, wind speed,
and global solar radiation). Using these equations and
public data on climatic regimes in different areas, pre-
dictions were made of the average seasonal changes in
maintenance requirements of Calidris canutus islan-
dica migrating between the Canadian Arctic breeding
grounds and the Dutch Wadden Sea wintering grounds,
with a stopover in Iceland. In Figure 3 this reconstruc-
tion has been expanded to also include the seasonal

changes in maintenance requirements of C. c. canutus
breeding in Siberia and wintering in tropical West-Af-
rica. This estimate does not include the costs of for-
aging and prey processing (even though these may
partly substitute for thermoregulation costs; Bruinzeel
and Piersma, 1998).

The contrast between the two subspecies is remark-
able. Whereas islandica-knots incur the highest costs
in midwinter, canutus-knots face the highest mainte-
nance requirements during the breeding season when
they reach values for maintenance metabolism of 2.5
W (Fig. 3). This is about 60% of the empirical estimate
using doubly-labeled water of the average energy ex-
penditure during the incubation period (Fig. 2A; T.
Piersma et al., unpublished data). If, simply for con-
venience, we use this ratio of total energy expenditure
to maintenance requirement (i.e., a ratio of 1.7) as an
approximation for the rather similarly costly thermal
conditions in midwinter in the temperate zone, what
level of energy expenditure would we predict for win-
tering islandica-knots that incur a maximum mainte-
nance requirement of almost 3 W in January (Fig. 3)?
Based on 31 yr of weather data, the long-term average
overall maintenance requirement for red knots winter-
ing in the Dutch Wadden Sea (September–April) was
2.6 W (Wiersma and Piersma, 1994). This leads to an
estimated average total energy expenditure of 4.4 W,
or of 5.1 W during the coldest month. As BMR is
close to 1 W in wintering red knots (Piersma et al.,
1995a, 1996a), such expenditure levels again approach
inferred metabolic ceilings of 4–5 times BMR.

A similarly high level of energy expenditure was
demonstrated in small sandpipers (sanderlings, Cali-
dris alba) wintering on the cold temperate beaches of
New Jersey (Castro et al., 1992). Given the red knots’
habit of living in large flocks that range over huge
areas (Piersma et al., 1993a, 1995a; van Gils and
Piersma, 1999), it is practically impossible to obtain
direct doubly-labeled water measurements for this spe-
cies. Instead, we made metabolism measurements on
confined individuals living in natural settings, i.e., a
small, 7 by 7 m mudflat where they fed on bivalves
that they retrieved from the sediment during low tide
(Fig. 4; see Piersma, 1994; Visser et al., 2000). During
an outdoor experiment when the maintenance require-
ment estimated from the predictive equations of Wiers-
ma and Piersma (1994), amounted to 1.5 W, the av-
erage energy expenditure of four individuals was al-
most double that, 2.9 W or ca. 250 kJ/day (Fig. 4).
That the earlier inferred ratio of 1.7 may not be so
general is further illustrated by the results of an ex-
periment during which six red knots foraged on an
indoor artificial mudflat. Although, at ambient air tem-
peratures of ca. 188C (i.e., approximately the lower
critical temperature; see Piersma et al., 1995a) they
faced no cost of thermoregulation, their average ex-
penditure was ca. 4 W (348 kJ/day), which is 4 times
BMR and not far below the metabolic ceiling of Kirk-
wood (1983).

In this particular trial (indicated by the code ‘‘IF-
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FIG. 3. Comparison of the seasonal variation in levels of thermostatic costs in the Euro-Canadian subspecies islandica and the Afro-Siberian
subspecies canutus of the red knot. The reconstruction for islandica-knots is from Wiersma and Piersma (1995).

C1’’ in Visser et al., 2000), the birds were feeding on
cockles (Cerastoderma edule) of very poor quality
(i.e., little meat and a lot of water and shell material
to take care of in the digestive tract). In this situation
the birds had record water fluxes of 625 g/day (which
is 17 times the allometric prediction for free-living
birds; Nagy and Peterson, 1988). Very high levels of
energy expenditure of birds that spent nothing on ther-
moregulation have to be explained by the cost of
crushing the shells and dealing with the huge salt water
load (including the dissipation of the salt load by the
nasal glands). Although red knots in the wild are ex-
pected to feed on higher quality shellfish (more meat
per volume of salt water and g of shell) than the ones
in this particular experiment, the cost of being a food-
specialist with a diet that consists of shellfish ingested

whole will nevertheless always be considerable (cf.,
Nehls, 1996). We therefore expect red knots wintering
in Western Europe to routinely live close to, and often
above, the predicted metabolic ceiling of ca. 5 times
BMR. To cope with such costs, they and other north-
erly wintering shorebirds have larger nutritional organs
than those wintering in more relaxed climates (Piersma
et al., 1996a; Summers et al., 1998).

Wintering at tropical latitudes

The canutus-knots migrating onward to tropical
West-Africa are predicted, on the basis of climatic
data, to have overwinter maintenance requirements of
1.5 W (Fig. 3). Although they may also face the con-
siderable costs that come with a diet of ingested shell-
fish, it is unlikely that they approach expenditure lev-
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FIG. 4. Comparison of two estimates of daily energy expenditure
of shellfish-eating red knots feeding and roosting under natural
schedules under semi-natural conditions in (1) an outdoor aviary in
April (M. Poot and T. Piersma, unpublished data; see Piersma, 1994)
and (2) an indoor aviary (A. Dekinga, T. Piersma, B. Achterkamp,
and G. H. Visser, unpublished preliminary data; see Visser et al.,
2000).

els of 5 times BMR. Instead, they may face different
problems. In tropical environments, especially under
conditions of high humidity, the birds may be faced
with problems of radiative heat gain (Klaassen and
Ens, 1990; Verboven and Piersma, 1995; P. F. Battley
et al., unpublished data). Under some conditions in-
ternal heat production and the capacity for salt excre-
tion to produce osmotically free water for evaporative
cooling may cause birds to hit design constraints that
are rather similar to the ones imposed by high ther-
moregulatory or food-processing costs (Klaassen,
1990; Klaassen et al., 1990; P. F. Battley et al., un-
published data).

In the face of external heat loads it may pay to re-
duce the internal heat load. Indeed, in congruence with
bird species from arid environments that show reduced
basal and field metabolic rates compared to birds from
mesic environments (Tieleman and Williams, 2000),
red knots wintering in West-Africa (Piersma et al.,
1996a) and all other shorebird species examined in this
climate zone (Kersten et al., 1998), have reduced
BMRs compared with shorebirds from temperate win-
ter climates (Kersten and Piersma, 1987). However,
before embarking on long-distance flights of many
thousands of kilometers, shorebirds usually increase
the size of their heart and pectoral muscles (e.g., Piers-
ma et al., 1999c), which may induce increases in BMR
(Weber and Piersma, 1996). Simultaneously, the birds
develop an envelope of fat, that reduces the capacity
of heat loss, and they molt into a darker plumage
which increases heat absorption. During such times,
there may well be conflicts of phenotypic design.

In the one case study on great knots (Calidris ten-
uirostris) that were near departure on a 5,500 km long
northward flight from the humid tropics of northwest
Australia (see Battley et al., 2000), such a conflict was

at least in part resolved by behavioral adjustments (P.
F. Battley et al., unpublished data). Individual birds
that, according to their breeding plumage, were ready
to depart showed more extensive heat avoidance be-
haviors than birds that had not yet molted. This be-
havior involved the raising of back feathers, a posture
that may reduce the external heat load or increase the
possibilities for convective or evaporative cooling.

TIMES OF CHANGE: MIGRATION

When animals move long distances over inhospita-
ble habitats, they cannot eat and must rely on stored
fuels. The time and energy necessary for fuel storage
must therefore be considered part of the migration it-
self (Alerstam and Lindström, 1990; Drent and Piers-
ma, 1990). The ecological issues relevant to migrants
during fueling episodes have increasingly attracted
specific attention under the banner of ‘‘stopover ecol-
ogy’’ (Lindström, 1995).

Fueling episode

The time required to store the fuel load necessary
to cover the distance to the next destination, is deter-
mined by the rate of fuel storage (Zwarts et al., 1990).
Fuel storage rates could thus provide a bottleneck to
avian performance in the same way that rates of en-
ergy expenditure may delimit distribution in costly cli-
mate zones (Root, 1988). In addition, there is evidence
that female red knots also store critical nutrients for
egg production such as calcium (Piersma et al.,
1996d).

A general demonstration of design constraints af-
fecting refueling was given by Lindström (1991). If
there exists a limit to the amount of food that can be
processed (an energetic bottleneck of the kind envis-
aged by Kirkwood, 1983), and if birds at stopover sites
require about two times BMR for maintenance and
basic activities, then the maximum part of the metab-
olized energy intake that is theoretically left for fuel
storage is about 2–3 times BMR. As mass-specific
BMR decreases with increasing body mass (Lasiewski
and Dawson, 1967; Aschoff and Pohl, 1970), smaller
bird species should be able to put on fat at a higher
relative rate than larger birds (Lindström, 1991). Ex-
pressed as a percentage of lean body mass per day, the
fuel deposition rate should scale to mass with an ex-
ponent of 20.27. This is precisely what the field data
show (Lindström, 1991). If a certain relative fat mass
yields a certain flight range irrespective of the size of
the bird (Pennycuick, 1975), then large species need
more time for fueling than smaller species per distance
traveled.

One can escape this allometric rule as a species or
as an individual by modifying the constraining factors
of the design. If a bird could increase the size of the
food-processing organs, then it could potentially in-
crease fueling rate (Klaassen et al., 1997). Lindström
and Kvist (1995) showed that under ad lib. food con-
ditions, species that have a relatively high fueling rate
also have a relatively high BMR. A study on refueling
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FIG. 5. Changes in the average fat loads and the fat-free dry mass
(i.e., the mass of functional tissue) of the empty intestine and the
liver in red knots fueling up in Iceland in May 1994 (left panels)
and Delaware Bay in May 1998 and 1999 (right panels). The Iceland
data are from Piersma et al. (1999b) and the Delaware data from T.
Piersma, A. Dekinga, and D. B. Carter (unpublished). Dates of de-
parture are 28 May in Iceland and 29 May in Delaware Bay.

blackcaps Sylvia atricapilla demonstrated experimen-
tally that the rate of energy assimilation under ad lib.
food was proportional to the size of intestinal tract and
liver (Karasov and Pinshow, 2000). As will be illus-
trated below, BMR often appears to reflect the size of
the organs involved in the process of food intake and
nutrient processing.

However, a powerful gastrointestinal tract is heavy
and costly to carry around; it would reduce the flight
range obtained per gram of fuel. A ‘‘fit’’ migrant
would therefore be expected to vary its capacity for
food processing by changing the size and/or capacity
of gastrointestinal tract and liver depending on wheth-
er it is fueling or ready to start a long-distance flight.
Similarly, the ‘‘flight machinery’’ consisting especially
of pectoral muscles, heart and blood should increase
in size just before departure. This is exactly what re-
cent field studies have found (Piersma et al., 1993c,
1996b, 1999c; Battley and Piersma, 1997; Jehl, 1997;
Biebach, 1998; Karasov and Pinshow, 1998; Piersma,
1998; Piersma and Gill, 1998), and what was also
shown in experimental settings (Hume and Biebach,
1996; Dietz et al., 1999b; Lindström et al., 2000).

The principle can be illustrated by data on the pat-
terns in fuel storage and organ change of two popu-
lations of similarly body-sized red knots during north-
ward migration (islandica-knots in Iceland and rufa-
knots in Delaware Bay). In this example the timing of
northward migration is highly synchronized within the
population and for this reason it is possible to approx-
imate individual compositional changes by sequential
sampling of the populations (Lindström and Piersma,
1993; van der Meer and Piersma, 1994). After arrival
from Western Europe in Iceland in early May 1994,
no fat is stored during the first week or so, but during
this time the liver increases in size (Fig. 5). After this
time, fat deposition is in full swing and the organs
involved in nutritional processing (intestine and liver)
further increase in size (Fig. 5). In the days before
departure the sizes of these nutritional organs decrease,
and simultaneously the sizes of pectoral muscles and
heart increase (Piersma et al., 1999c).

In 1998, a ‘‘normal year,’’ the pattern for rufa-knots
arriving in Delaware Bay from South America was
basically similar to that of the islandica-knots in Ice-
land. An important difference was that the birds in
Delaware arrived with smaller fat stores and also a
smaller intestine and liver, probably a function of the
very long flight from South-America that they just
made (Harrington, 1996). During such sustained long-
distance flights, loss of proteinaceous material is as
much unavoidable as it is strategically convenient
(Pennycuick, 1978; Jenni and Jenni Eiermann, 1998;
Battley et al., 2000). The intestine of red knots in Del-
aware Bay in the normal year 1998 did not reach the
lean intestine mass of birds in Iceland, which may
have to do with the difference in diet: horseshoe crab
(Limulus polyphemus) eggs in Delaware Bay (Castro
et al., 1989) and mollusks in Iceland (Alerstam et al.,
1992).

In 1999 some red knots arrived in Delaware Bay at
normal times and with normal body masses (illustrated
by the ‘‘first’’ data point in Fig. 5), but the great ma-
jority of birds arrived very late (P.M. González et al.,
personal communication), mostly only about 10–15
days before the day of northward departure (ca. 29
May). These birds were therefore able to start storing
fat only about a week before take-off but, surprisingly,
they managed quite well (Fig. 5). On the day of de-
parture, fat stores were only a little below the stores
in the normal year 1998. Somehow they had been able
to compensate time losses by higher storage rates. The
surprising fact is that they were able to achieve these
very high storage rates with intestines that showed no
gross hypertrophy, and livers that showed increases
much smaller than in the previous normal year. This
suggests that birds increased some other component
enhancing fueling efficiency than gross morphological
changes, perhaps a reliance on the reserve capacity of
the digestive enzyme systems (Diamond and Ham-
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mond, 1992; Hammond and Diamond, 1992; Dia-
mond, 1993). Thus, organs such as the liver apparently
are capable of doing a ‘‘job’’ even if of smaller size.
In turn this implies that there must be a cost to fast
fueling with undersized organs. This additional layer
of flexibility that showed its face under conditions of
severe time pressure, emphasizes once more that bot-
tlenecks are relative.

Evidence for other, ‘‘organizational,’’ constraints?

Between the time red knots and other tundra-breed-
ing shorebirds take-off from the last staging site and
fly the several thousand kilometers into the Arctic re-
gion to settle on a tundra territory and find a mate,
other changes must take place. Not only do they have
to shift phenotype with regard to a change from a ‘‘fu-
eling’’ to a ‘‘flight’’ type, they also go from a non-
reproductive into a reproductive mode. Red knots al-
ready start displaying in the days before departure to
the High Arctic (Piersma et al., 1991b), and during the
same time they suddenly start making peculiar and
complicated diester preen waxes that may play a role
in sexual advertisement (Piersma et al., 1999a; Sin-
ninghe Damsté et al., 2000). They also steeply increase
baseline levels of the stress hormone corticosterone be-
fore departure (Piersma et al., 2000; see Landys-Cia-
nelli et al., 2002 for the very similar bar-tailed godwit
Limosa lapponica), and strongly decrease baseline cor-
ticosterone some time after arrival on the tundra (Re-
neerkens et al., 2002). In short, the birds show fast
and complicated changes from one life-cycle stage to
another, and the speed and accuracy of such changes
may be determined by a kind of ‘‘reorganization’’ con-
straint (cf., Wingfield and Jacobs, 1999; Jacobs and
Wingfield, 2000).

Flight episode

Birds in transit may have to abort their flight as a
consequence of running out of energy, water or protein
(see Fig. 2D; Yapp, 1962; Carmi et al., 1992; Klaas-
sen, 1995, 1996; Klaassen et al., 1999). In a recent
study, Landys et al. (2000) intercepted bar-tailed god-
wits as they were arriving onto their Wadden Sea stop-
over site after a 4,300 km migratory flight. No differ-
ences were found in the percent body water of arriving
godwits compared with those which had already re-
hydrated. This suggest that these birds were able to
maintain physiological water levels during flight.

Although for such long-distance migrating shore-
birds, stored energy may thus indeed be the main con-
straint to flight range (cf., Piersma and Jukema, 1990),
empirical measurements of flight costs as a function
of the energy store of individual birds have only just
begun (Kvist et al., 2001). The finding that the effi-
ciency with which metabolic power input is converted
into mechanical power output by the flight muscles
increases with fuel load suggest another, hitherto un-
recognized, layer of physiological flexibility.

RE-EXAMINING THE RELATIONSHIP BETWEEN BMR AND

METABOLIC CEILINGS

The recent experimental work on birds and mam-
mals demonstrates that metabolic performance can be
increased, by means of phenotypic (organ) adjust-
ments, by cold stress (Williams and Tieleman, 2000),
or, in mammals, by the milk demands of increased
litter sizes (Hammond and Diamond, 1992; Speakman
and McQueenie, 1996), or both (Hammond et al.,
1994). The study of Hammond et al. (1994) also in-
dicates that a capacity for enhanced thermoregulation
is quite different from a capacity for enhanced lacta-
tion. Different organ systems seem to provide different
constraining factors, which can then be lifted to vari-
ous extents under increased specific demands.

Confirming the initial hypothesis (Kersten and
Piersma, 1987) and the first assessments of this hy-
pothesis using comparative data (Daan et al., 1990,
1991), there is now also ample evidence from intra-
specific studies that changes in the size of metabolic
machinery (lean mass, size of different organ systems)
are reflected in changes in BMR (Table 1), although
simultaneous changes in the metabolic intensity of the
organs can destroy such relationships (J. A. Gessaman,
A. Dekinga, and T. Piersma, unpublished data). Rick-
lefs (1996) discussed whether maximum field meta-
bolic rate should be seen as a direct function of BMR,
or whether these quantities should be treated as ener-
getic consequences of different aspects of an organ-
ism’s performance. He concludes that the relationship
between BMR and field metabolic rate ‘‘may be for-
tuitous rather than direct.’’ On the basis of the fore-
going discussion I would claim that the relationship is
indeed indirect but certainly not fortuitous. BMR re-
flects the maintenance cost of the metabolic machinery
necessary for animals to achieve peak metabolic per-
formances, whether by expending high rates of energy
during strenuous exercise (requiring large pectoral
muscles and hearts and viscous blood) or whether by
storing large amounts of energy rich fuel each day
(requiring large guts and livers).

Thus, the graphical model presented by Piersma et
al. (1996a; see Fig. 6 top) to show how BMR and
field metabolic rate would be functionally coupled is
incomplete. BMR, in reflecting the size and capacity
of the metabolic machinery, does not determine a gen-
eral ceiling, but by virtue of the size and capacity of
particular organ groups rather sets particular kinds of
ceiling (Fig. 6). Depending on the other costs (e.g.,
cost of thermoregulation) that an organism has to meet
(Klaassen et al., 1997), the size of the digestive ma-
chinery could set a limit to fueling rate (Fig. 6). Equal-
ly, the size of the exercise organs such as the pectoral
muscles and the heart could set a ceiling to a capacity
for strenuous exercise and thermoregulation. Although
incomplete because of the compartmentalization, the
rationale of using BMR as a yardstick to judge max-
imal sustained metabolic performances (Drent and
Daan, 1980; Hammond and Diamond, 1997) is nev-
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TABLE 1. Evidence from intraspecific studies that BMR is possibly a function of the size of metabolically active organ systems.

Species
Nature of positive association between the size

of organ (groups) and BMR-level Reference(s)

Mouse
Mus musculus

Interindividual correlation between the experimentally varied size
of alimentary tract, liver and kidneys and BMR

Speakman and McQueenie, 1996

Field vole
Microtus agrestis

Interindividual correlation between heart, kidneys and liver and
BMR

Meerlo et al., 1997

Red junglefowl
Gallus gallus

In females, BMR correlates with spleen mass and in males BMR
correlates with mass of intestinal tract and lung

Hammond et al., 2000

European kestrel
Falco tinnunculus

Kestrels on restricted diet have lower BMR and disproportionally
lower heart and kidney mass than controls

Daan et al., 1989

Great knot
Calidris tenuirostris

Post-migration and starved birds have lower BMR, correlated
with pectoral muscle and intestinal masses

Battley et al., 2000, 2001

Red knot
Calidris canutus

Interindividual correlation between size of heart and pectoral
muscle and BMR

Weber and Piersma, 1996

Red knot
Calidris canutus

Red knots with small nutritional organs have a relatively low
BMR as well

Piersma et al., 1996a

Tree swallow
Tachycineta bicolor

Interindividual correlation between mass of kidneys and hemato-
crit, and BMR in reproducing adults

Burness et al., 1998

Hoopoe lark
Alaemon alaudipes

Liver, kidney and intestine were larger in the cold-exposed group
which also had the higher BMR

Williams and Tieleman, 2000

House sparrow
Passer domesticus

Interindividual correlation between mass of heart, liver, pectoral
muscles and lungs on the one hand and BMR on the other

Chappell et al., 1999

ertheless quite valid as long as the appropriate values
for BMR are used. As authors have frequently used
single values for BMR and certainly not values that
were measured in the hardest-working phenotype (e.g.,
Peterson et al., 1990:table 3; Hammond and Diamond,
1992; Speakman and McQueenie, 1996), in practice
this means that some of the ratios between maximum
sustained metabolic rates and BMR will be much too
high.

GENERAL DISCUSSION

Flexible bottlenecks, ceilings, phenotypes

Energetic bottlenecks and metabolic ceilings are as
heuristically valuable as they are elusive. Nothing is
really fixed and unless one verifies ceilings in energy
expenditure by experimentally increasing the demands
(Hammond and Diamond, 1992; Hammond et al.,
1994; Speakman and McQueenie, 1996), it is not pos-
sible to say whether an exercising animal could work
harder or not. Yet, sometimes rates of energy expen-
diture are truly refractory to experimental modifica-
tion. European kestrels and great tits (Parus major)
with enlarged broods (Masman et al., 1989; Tinbergen
and Dietz, 1994; Verhulst and Tinbergen, 1997; Tin-
bergen and Verhulst, 2000), or European starlings
(Sturnus vulgaris) that had to work hard for their food
(Bautista et al., 1998), were all ‘‘unwilling’’ to expend
the expected amounts of energy on the additional labor
demanded by the experimental conditions. Instead,
they seemed to compromise performance and/or allo-
cated energy intake differently by changing their time
budget, body composition, expenditure during periods
of rest, or any combination of these factors. Energetic
bottlenecks appear to be set by the marginal value of
organ size increases relative to particular peak require-
ments (including safety factors; Diamond, 1993).

Especially in the starling-experiments of Bautista et

al. (1998), the power of a flexible phenotype seemed
to make it impossible for the experimentators to raise
the work level beyond 2.5 times BMR, the absolute
expenditure level even being lowered during hard
work as a consequence of concomitant reductions in
body mass and energy expenditure. Thus, it is indeed
all a matter of trade-offs and allocations in the light
of fitness considerations (Ricklefs, 1996; Bryant,
1999). Nature will not give these engineering rules
away easily.

Why can some species live so close to the metabolic
ceiling?

It is striking that all red knots live an energetically
costly life-style during some periods of the year, and
that some (e.g., islandica-knots) almost always are
near the theoretical ceiling levels based on studies in
a wide range of birds and mammals. Why can such
birds afford to be so apparently energetically ‘‘waste-
ful’’ whereas others seem to be so thrifty (Bryant,
1999)?

Earlier I suggested that the habitats chosen by red
knots and related arctic-breeding shorebirds may be
relatively disease-free and thus require little invest-
ment by animals in immunological defense (Piersma,
1997). Immunological defense may be very costly in
survival terms (e.g., due to the production of DNA-
damaging free-radicals; e.g., Klasing and Leshchinsky,
1999; von Schantz et al., 1999), just as expending en-
ergy is for the same reasons. Germ-poor environments
may thus allow their inhabitants energetically costly
habits without further enhancing the aging process and
reducing survival. Therefore, the lack of damaging im-
munodefense efforts permits sustained high rates of
energy expenditure and physically demanding flights
(Piersma, 1997).
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FIG. 6. An old and a new version of a diagram to demonstrate the functional link between the heights of metabolic ceilings and Basal
Metabolic Rate (BMR). In the new concept due attention is given to the idea that BMR reflects the summed contribution of size-related
maintenance requirements of different organ systems (assuming invariable metabolic intensity). The vertical double-arrows indicate the ‘‘scope’’
for enhanced sustained performance given the size of the metabolic machinery.

New directions in ecological physiology?

It is remarkable that in the soul-searching enterprise
of American ecological and evolutionary physiology
in the 1980s (a series of chapters edited by Feder et
al., 1987), the statement that ‘‘energy availability and
utilization are important constraints on animal func-
tion’’ (Bennett, 1987) was acknowledged as a hard
fact. Yet, the very existence of such ‘‘constraints,’’ and
the fact that the constraints themselves are nature’s so-
lutions to competing demands, remained unexplored
in this book except for Futuyma’s (1987) question:
‘‘why can’t a species adapt enough to spread a little
further over an ecological or geographical gradient?
. . . what are the constraints on adapting further?’’ In
the book the value of interindividual comparisons to
gain evolutionary insight in organismal design attract-

ed numerous contributions, but the intraindividual var-
iation in morphology and physiology received no at-
tention at all. Ecophysiological studies of long-dis-
tance migrant birds have definitely illuminated the fact
that ecological and evolutionary pressures can result
in remarkable seasonal variation in organismal design.
Now that the techniques to assay such intraindividual
variation, in for example internal morphology and hor-
monal orchestration, are becoming available (e.g.,
Wingfield and Farner, 1993; Dietz et al., 1999a; Piers-
ma and Klaassen, 1999; Starck, 1999a), this exciting
and perhaps critical layer of organismal complexity is
within reach of investigation.

I expect that long-distance migrants will yield some
surprises with respect to the physiology of fuel utili-
zation (Guglielmo et al., 1998; Jenni and Jenni-Eier-

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article/42/1/51/559913 by guest on 09 April 2024



63DESIGN CONSTRAINTS ON AVIAN LIFE HISTORY AND PERFORMANCE

mann, 1998, 1999). Some of these may be relevant to
human issues like obesity and sport physiology (cf.,
Secor and Diamond, 1998; Guglielmo et al., 2001).
The enormous flexibility in size of critical and com-
plicated organs like the liver may give us insights to
the processes of rapid cell proliferation and cell death
during ontogeny, cancer and starvation. With respect
to disease and aging, studies of the natural history of
hard work, energetics, free-radical damage and senes-
cence are already contributing greatly (e.g., Austad
and Fischer, 1991; Ricklefs and Finch, 1995). In ad-
dition, long-distance migratory birds offer beautiful
models when it comes to the virtually unexplored but
basic field of the endogenous organization of the sea-
sonal changes in vertebrate pheno- and ethotypes (cf.,
Jacobs and Wingfield, 2000).
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