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Synopsis The network of the interactions among genes, proteins, and metabolites delineates a range of potential phe-

notypic diversifications in a lineage, and realized phenotypic changes are the result of differences in the dynamics of the

expression of the elements and interactions in this deterministic network. Regulatory mechanisms, such as hormones,

mediate the relationship between the structural and dynamic properties of networks by determining how and when the

elements are expressed and form a functional unit or state. Changes in regulatory mechanisms lead to variable expression

of functional states of a network within and among generations. Functional properties of network elements, and the

magnitude and direction of evolutionary change they determine, depend on their location within a network. Here, we

examine the relationship between network structure and the dynamic mechanisms that regulate flux through a metabolic

network. We review the mechanisms that control metabolic flux in enzymatic reactions and examine structural properties

of the network locations that are targets of flux control. We aim to establish a predictive framework to test the con-

tributions of structural and dynamic properties of deterministic networks to evolutionary diversifications.

Assessing the role of regulatory
mechanisms in phenotypic
diversification

The link between the topology of genomic, proteo-

mic, and metabolic network elements and the dy-

namic properties of their interactions is crucial for

the stability of a phenotype and opportunities for

evolutionary diversification. The structure of all of

the possible functional relationships between genes,

proteins, enzymes, and metabolites defines a deter-

ministic network, in which each distinct functional

state corresponds to a potential phenotype (Box 1;

Schuster et al. 2000; Covert and Palsson 2002; Alon

2003; Barabási and Oltvai 2004; Covert et al. 2004).

During diversifications within a lineage, some ele-

ments and interactions of deterministic networks

remain unchanged, whereas others vary widely

across taxa (Fraser et al. 2002; Almaas et al. 2005;

Hahn and Kern 2005; Light et al. 2005; Bernhardsson

et al. 2011; Badyaev et al. 2015). The difference in

evolutionary conservation of elements and interac-

tions may be related either to their roles in

maintaining global structural properties, defined by

the topology and connectivity of the entire network

(Albert et al. 2000; Jeong et al. 2001; Schmidt et al.

2003; Vitkup et al. 2006), or to the distinct functional

roles of elements and interactions independent of

their structural positions (Papp et al. 2004; Almaas

et al. 2005; Mahadevan and Palsson 2005; Vitkup et

al. 2006). These contrasting explanations reflect the

debate as to whether selection acts on structure of

deterministic networks or on distinct functional

states within a network (Wagner 2007; Papp et al.

2009). This distinction is the focus of our review.

Changes in structural properties of a network—

such as in element connectivity and pathway length

(Box 1; Costa et al. 2007)—are determined by the

physical gain or loss of elements and interactions as a

result of gene duplications (Wagner 2001; Vázquez

et al. 2003; Kondrashov 2012), mutations in existing

genes (Wagner 2003; Berg et al. 2004), or horizontal

gene transfers (Light et al. 2005; Pál et al. 2005;

Klassen 2010). In contrast, functional states—such

as the rate of chemical reactions and the levels of
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gene expression (Fell 1997; de la Fuente et al. 2002;

Kuznetsov et al. 2002; Farkas et al. 2003)—are deter-

mined by the physical and chemical properties of

elements and interactions in a deterministic network

(Westerhoff et al. 1984; Ibarra et al. 2002). Due to

fundamental constraints placed on the chemical and

physical properties of elements and interactions in

the network, the efficacy of functional states varies

across environments: Some states are more locally

optimal than others in dynamic properties such as

energy consumption or reaction rates (Westerhoff et

al. 1984; Ortega and Acerenza 1998; Ibarra et al.

2002; Price et al. 2004). The dynamic properties of

a deterministic network determine how the elements

and interactions in the network are utilized in a par-

ticular environment (Box 1). Thus, knowledge of the

relationship between dynamic and structural proper-

ties of the network is needed to assess their roles in

evolutionary diversification. Regulatory mechanisms

control expression of functional states in a determin-

istic network (Almaas et al. 2004; Papp et al. 2004;

Price et al. 2004; Reed and Palsson 2004; Almaas

et al. 2005; Nam et al. 2012) and, therefore, the

evolutionary potential of changes in functional

states and network expression across taxa

(Westerhoff et al. 1984; Heinrich et al. 1991; Fell

1997; Edwards et al. 2001; Ibarra et al. 2002;

Davidson and Erwin 2010). The efficacy of regulatory

changes in functional states in the network, however,

depends on topological locations of the regulatory

mechanisms within a deterministic network (Erwin

and Davidson 2009).

Here, we examine whether some topological posi-

tions within a network are more likely to be regu-

lated than others to determine whether regulatory

changes related to structural properties produce dis-

tinct phenotypic changes. We focus on metabolic

networks, because complete topologies of these net-

works are now available for many species (Edwards

and Palsson 1999, 2000a; Kanehisa et al. 2014). The

study of metabolic flux—the rate of enzymatic reac-

tions across a network—provides an opportunity to

relate changes in enzyme activity at particular topo-

logical positions to phenotypic plasticity in the use of

a network within an individual and to phenotypic

change across generations. We integrate knowledge

of topological properties of optimal flux control

with studies that examine variation in flux caused

by diverse abiotic and biotic conditions (Kacser

and Burns 1981; Fell 1997; Ibarra et al. 2002; Segrè

et al. 2002; Dekel and Alon 2005).

We first present an overview of the mechanisms

that can control flux in metabolic pathways. We then

review structural properties in metabolic networks

that are associated with locations of optimal flux

control, and assess the impact of differences in the

topological locations of regulatory controls on ex-

pression of functional states.

Box. 1 Structural and dynamic properties of deterministic net-

works.

Deterministic network represents all possible interactions (gray

lines) among elements such as genes, proteins, enzymes, and

metabolites (gray circles) that could underlie a phenotype.

Structural network properties describe the organization and

location of the interactions among elements in a network.

Pathway length is the number of interactions between elements

(e.g., pathway length between A and I is four interactions), and

connectivity is the number of interactions per element (e.g.

connectivity of B is three interactions).

Dynamic network properties define interactions and elements

that are more likely to be co-expressed and the strength of this

expression under different conditions. This can be due to abiotic

factors or internal regulation. Co-expressed elements and inter-

actions represent functional states. In the figure, the black pat-

terned outlines represent functional states of the network that

are expressed in different species.

Calibrating phenotypic differences on a deterministic network:

The relationship between structural and dynamic properties of a

deterministic network can be used to calibrate differences be-

tween its functional states. In the figure, the network of species 2

differs from both of the networks of species 1 and 3 by two

interactions and elements, whereas the networks of species 1 and

3 differ by three interactions and elements. The current dynamic

properties of the network establish that the interaction between

D and G is more likely than other interactions between the el-

ements expressed in these species, such as the interaction be-

tween D and E, which is not present in any of the species’

networks.
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Mechanisms of metabolic flux control

Flux through a pathway is regulated by enzyme ac-

tivity and production (Fell 1992, 1997; Rossell et al.

2006). Differences in the availability of the initial

substrates of metabolic pathways and the affinity of

enzymes for these substrates contribute to flux vari-

ation. Substrate concentrations over certain threshold

levels activate enzymes, followed by an increase in

reaction rates until enzymes become saturated

(Matsuno et al. 1978; Bongaerts and Vliegenthart

1988). Flux in a metabolic network can change rap-

idly and reversibly, caused by changes in the avail-

ability of initial, often external, substrates (Nasution

et al. 2006; Wu et al. 2006; Taymaz-Nikerel et al.

2011; Taymaz-Nikerel et al. 2013), or due to short-

term fluctuations in the enzyme affinity for the sub-

strate (e.g., caused by temperature or pH changes;

Dixon 1953; Szasz 1974; Bongaerts and Vliegenthart

1988; Saavedra et al. 2005; Sørensen et al. 2015). Flux

can be permanently changed, however, as the result

of irreversible modifications to the enzyme that

changes its affinity for a substrate, often caused by

changes in the physical structure of the enzyme, such

as due to mutation (Lamb et al. 1997).

Metabolic flux is also affected by the allosteric

regulation of enzymes, in which enzymes are acti-

vated or deactivated by reversible covalent modifica-

tions. Allosteric regulation adjusts enzyme activity to

changes in abiotic and biotic environments of the

metabolic network (Ralser et al. 2009; Link et al.

2013). Feedback inhibition of enzymes by other me-

tabolites is one of the ways allosteric regulation can

be accomplished (Umbarger 1956; Yates and Pardee

1956). In these cases, metabolites produced at the

end of pathways bind to the enzymes at the begin-

ning of pathways and deactivate the enzymatic reac-

tions to limit the further production of downstream

compounds. Alternatively, covalent modifications

might be caused by protein complexes binding to

specific enzymes. For example, protein kinases and

phosphoprotein phosphates activate or inhibit en-

zymes via phosphorylation and dephosphorization

(Krebs and Beavo 1979). Protein complexes

themselves can be regulated by abiotic factors

(Kaufmann et al. 1999; Jarmuszkiewicz et al. 2015),

hormones (Cohen 1988; Strålfors and Honnor 1989),

growth factors (Lee et al. 1991; Kholodenko et al.

1999), or neural impulses (Wang et al. 1988;

Bauerfeind et al. 1997). Variation in these factors

can underlie adaptive responses of metabolic flux

without permanently altering pathway structure or

the structure of the enzyme itself (ter Kuile and

Westerhoff 2001; Heinemann and Sauer 2010;

Chubukov et al. 2013; Schwender et al. 2014;

Machado et al. 2015).

In addition to changes to enzyme activity, meta-

bolic flux can be regulated by transcriptional and

translational controls involved in enzyme produc-

tion. Transcription rates of specific enzymes in path-

ways can vary widely in response to metabolite

concentrations (Goelzer et al. 2008; Bradley et al.

2009), signaling molecules (Cho et al. 2008), or abi-

otic environmental perturbations (Gasch et al. 2000;

Causton et al. 2001; Enjalbert et al. 2006). The reg-

ulation of translation is also dependent on the rela-

tive stability of mRNA transcripts (Smolke et al.

2000, 2001; Bennett et al. 2008; Wang et al. 2015),

such that heritability of transcription rates can con-

tribute to the evolutionary stability of flux control

(Emilsson et al. 2008; Gordon and Ruvinsky 2012;

Schaefke et al. 2013). Mechanisms of flux control can

thus underlie both short-term, reversible changes and

more permanent, evolutionary changes in the expres-

sion of metabolic pathways. Below we review the

optimal placement of flux control in a metabolic

network and assess how topological locations of reg-

ulatory mechanisms affect short- and long-term evo-

lutionary diversification.

Integration of flux control mechanisms
into the static structure of metabolic
networks

Relationship between functional modularity and flux

control in metabolic networks

Groups of enzymes and compounds that are inter-

linked by stronger regulatory mechanisms than other

elements in the network form a functional module

(Hartwell et al. 1999). The coordinated regulation of

enzymatic reactions within functional modules could

be the result of optimizing flux control for a meta-

bolic network functioning in a wide range of envi-

ronments. Indeed, species that are frequently exposed

to many substrates and abiotic factors tend to have

networks with greater structural and functional mod-

ularity (Borenstein et al. 2008; Kreimer et al. 2008).

Alternatively, the coordinated regulation of enzymes

in a pathway could evolve to prevent their unneces-

sary buildup in the limited volume of a cell, which

could occur if enzymes were regulated independently

(Ellis 2001; Minton 2001; Wessely et al. 2011; de

Hijas-Liste et al. 2015).

Several models have been proposed to specifically

link flux control to network topology and functional

modularity of metabolites and enzymes. One model

proposes that the coordination of flux through mul-

tiple enzymes is controlled by a single rate-limiting
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enzyme at the beginning of a pathway to prevent the

buildup of intermediate metabolites (Blackman 1905;

Krebs 1957). Indeed, enzymes located at the begin-

ning of pathways tend to evolve greater flux control

than downstream enzymes (Eanes et al. 2006; Wright

and Rausher 2010; Olson-Manning et al. 2013;

Olson-Manning et al. 2015). Another model posits

that rate-limiting enzymes are uncommon, such

that the regulation of flux is distributed across the

enzymes along a pathway (Kacser and Burns 1973;

Heinrich and Rapoport 1974; Fell 1992; Fell and

Thomas 1995; Rossell et al. 2006). In this case,

changes in the activity of a single enzyme do not

affect the flux in a pathway (Van Hoek et al. 1998;

Nilsson et al. 2001; Daran-Lapujade et al. 2004) and

multiple enzymes are all controlled by the same reg-

ulatory mechanisms (Thomas and Fell 1998; Wessely

et al. 2011; de Hijas-Liste et al. 2015). Although the

targets of regulatory mechanisms differ between these

models, both ultimately result in the coordinated con-

trol of groups of multiple enzymes that are not asso-

ciated with any structural property of a network

(Pfeiffer et al. 1999; Ravasz et al. 2002; Schuster et

al. 2002; Spirin et al. 2003; Ihmels et al. 2004;

Kharchenko et al. 2005; Çakir et al. 2006; Seshasayee

et al. 2009; Zelezniak et al. 2014).

In this case, functional modules, and not enzymes

in specific topological positions, are therefore the

source of metabolic diversification on a biochemical

network (Wagner and Altenberg 1996; Nagy 1998;

von Dassow and Munro 1999; Raff and Raff 2000;

Badyaev and Foresman 2000; Badyaev 2007). Within

an individual, changes in flux affect all metabolites in

a functional module, but the relative proportions of

the enzymes remain constant due to their coordi-

nated activity and expression (Fell and Thomas

1995; Rossell et al. 2006). Thus, if the metabolic net-

work is portioned into functional modules under

different regulatory mechanisms, then changes in

the flux of enzymes will be unrelated to their struc-

tural positions, because the relative changes in flux of

enzymes in the same functional module will be con-

stant (Fig. 1A). Targeted regulation of functional

modules leads to environment-specific expression of

these modules (Almaas et al. 2004; Papp et al. 2004;

Reed and Palsson 2004). Indeed, the gain and loss of

enzymes within a module co-occurred over evolutionary

time, because proteins in the same functional module

tended to co-evolve at the same rate (Campillos et al.

2006; Chen and Dokholyan 2006). When selection tar-

gets the coordinated regulation of a functional module,

structural positions of enzymes should not be related to

evolutionary conservation of enzymes across species

(Fig. 1A).

Independent flux controls at the beginning

and end of pathways

The coordinated regulation and expression of enzy-

matic reactions may not extend over the entire path-

way. Uncoordinated regulation of flux along a

pathway modulates the synthesizing capacity of a

pathway, such that different parts of the network

can respond to changing conditions independently

and only the flux related to certain elements and

interactions in a pathway is altered. Greater numbers

of independent flux controls in a pathway are thus

expected in fluctuating environments (Soyer and

Pfeiffer 2010). Also, multiple regulatory mechanisms

in the same pathway should be most optimal for

longer, linear pathways, because of a time delay

before changes in the flux of an upstream enzyme

reaches the end of a pathway (Seshasayee et al. 2009;

Wessely et al. 2011). Independent flux controls at the

first and last enzymes in a pathway mitigates these

metabolic time delays (Klipp et al. 2002; McAdams

and Shapiro 2003; Zaslaver et al. 2004). For example,

differences in the transcriptional regulation of the

first and last enzymes in a pathway resulted in

lesser co-expression of enzymatic reactions in rela-

tion to the distance between reactions (Spirin et al.

2003; Ma et al. 2004; Kharchenko et al. 2005; Yu and

Gerstein 2006; Notebaart et al. 2008; Seshasayee et al.

2009; Wessely et al. 2011). Similarly, the initial and

terminating enzymes can be regulated by different

mechanisms, such as when the last enzyme is regu-

lated by transcriptional or translational factors,

whilst the first enzyme—via feedback inhibition

based on the concentration of the last metabolite

in the pathway (Moxley et al. 2009; de Hijas-Liste

et al. 2015).

When distinct flux controls are located along a

pathway, changes in flux depend on the topological

positions of the enzymes in the pathways (Fig. 1B).

For example, the flux of enzymes located in up-

stream positions should change at a different rate

than the enzymes located further downstream when

these enzymes are regulated by different control mech-

anisms. From an evolutionary perspective, the pres-

ence of several regulatory mechanisms may represent

different ways in which the same pathway can be

optimized to function in different environments.

For example, in the aliphatic glucosinolate pathway

of Arabidopsis thaliana, flux was controlled by the

first enzyme in the pathway in almost all environ-

ments, but different regulatory factors governed en-

zymes located further downstream (Olson-Manning

et al. 2015). Stabilizing selection was evident only in

the first enzyme in the pathway that had the largest
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influence on the overall flux in the pathway (Olson-

Manning et al. 2013). Several studies have docu-

mented distinct selection on enzymes in different

locations in a pathway: Central or upstream enzymes

and metabolites that contributed more to the control

of flux in pathways tended to be under stabilizing

selection, while downstream or terminal enzymes

that had less of an influence on the flux in pathways

were under divergent selection (Rausher et al. 1999;

Ramsay et al. 2009; Wright and Rausher 2010;

Bernhardsson et al. 2011). It follows that when mul-

tiple regulatory controls in a pathway are under se-

lection, the upstream elements of the pathways

should be conserved across species and downstream

elements should diverge (Fig. 1B).

Flux control at branching points in

metabolic pathways

Locations within a metabolic network where separate

pathways either converge to produce the same

Fig. 1 Structural locations of the control of metabolic flux affect phenotypic changes in the rate of enzymatic reactions in a biochemical

pathway and the evolutionary diversification of metabolic networks across species. The circles and arrows on the left represent metab-

olites and enzymes, respectively, in a biochemical pathway. The solid and dashed arrows denote structural locations of distinct regulatory

mechanisms on enzymes in a pathway. In the graphs on the right, proximate flux changes are measured by changes in the expression level

of compounds in a pathway (flux change), and the evolutionary diversification of a compound in a pathway is determined by the number of

species in a lineage that express the compound (species representation). To capture the structural positions of a compound in a network,

connectivity measures the number of reactions per compound and pathway position is the number of reactions that separate a compound

from the beginning of a pathway (Box 1). (A) When one regulatory mechanism coordinates the flux of all of the enzymes in a pathway,

then the structural position of a compound in a pathway does not matter, because all of the compounds in the pathway will experience the

same magnitude of flux change. Compounds that are part of the same functional module will be targeted by selection as a unit and will

thus be gained or lost together across species with no relation to their structural positions. (B) When independent regulatory mechanisms

control flux in different locations of the same pathway, changes in the flux of compounds will be related to their pathway position. In

pathways with multiple regulatory controls, upstream compounds that are located fewer reactions away from the beginning of pathways

have a large impact on changes in flux, and tend to be under stabilizing selection. Compounds located several reactions from the starting

point of a pathway do not have a significant influence on the overall flux, and thus divergent selection should be stronger on compounds

located at the end of pathways. (C) When there are different regulatory controls for pathways that either converge or diverge from the

same compound (branch point), flux changes should be related to the connectivity of a compound. Due to their participation in multiple

pathways, branch points have the greatest connectivity in a biochemical network, and thus tend to have a greater influence on metabolic

flux than less connected compounds only associated with one pathway. Therefore, over evolutionary time, we would predict that the most

connected compounds in the network will be conserved while divergent selection would occur among compounds with fewer enzymatic

reactions that contribute less to flux control in pathways.

Evolution of deterministic networks 239
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metabolite or diverge from the same precursor can

be targets of metabolic flux control. Metabolic con-

trol theory predicts that the interactions between the

pathways at branching points should result in dis-

tinct patterns of flux control (Kacser 1983; Fell and

Sauro 1985; Heijnen et al. 2004). At branching

points, there is often a decoupling of regulation be-

tween incoming and outgoing reactions, and one

pair of incoming and outgoing reactions from the

shared metabolite tends to be more optimal than

another potential reaction pair (LaPorte et al. 1984;

Heinrich et al. 1991; Stephanopoulos and Vallino

1991; Vallino and Stephanopoulos 1994; Spirin et

al. 2003; Ihmels et al. 2004; Notebaart et al. 2008;

Seshasayee et al. 2009). When the flux is optimized

in one of the branching pathways, it may shut down

the expression of the other pathway (Kacser and

Burns 1981) or, alternatively, the presence of two

converging pathways can be advantageous when it

allows for a greater flux into the following down-

stream enzyme (Heinrich et al. 1991). Metabolites

at branching points have high connectivity, such

that these metabolites are associated with more in-

coming and outgoing enzymatic reactions compared

with the metabolites in less connected parts of the

network. Given that many changes in flux are asso-

ciated with branch points in pathways, changes in

the regulatory control of highly connected enzymes

and metabolites should contribute more to changes

in flux than less connected metabolites and enzymes

(Zhang et al. 2007; Fig. 1C).

Branching points in metabolic networks enable the

robustness of metabolism to the loss of pathways due

to environmental or genetic perturbations, or they

can lead to specialization in the same environment

(Edwards and Palsson 2000b; Zhang et al. 2007; Vogt

2010; Chen et al. 2011; Weng 2014). The redundancy

inherent in convergent branch points of pathways

that produce the same metabolite from different sub-

strates buffers against the loss of one of the sub-

strates in the external environment (Badyaev et al.

2015; Higginson et al. In press). For example, when

Escherichia coli was exposed to fluctuating levels of

glucose and acetate, some strains evolved a generalist

phenotype that allowed them to use both substrates;

whereas neither pathway was optimized compared

with specialist strains, this strategy allowed the gen-

eralist strain to adapt to changing conditions

(Herron and Doebeli 2011). Alternatively, the pres-

ence of divergent branching points allows the expres-

sion of different pathways from the same starting

metabolite in different environments, leading to di-

versification and specialization (Lavington et al.

2014). The key role of branching points in the

adaptive evolution of metabolism is supported by

the finding that branching point enzymes tend to

occur in locations of optimal flux control (Eanes

1999; Flowers et al. 2007; Rausher 2013). The metab-

olites that anchor these branch points tend to be

conserved over evolutionary time, whereas the less

connected compounds within the pathways that

either converge or diverge from the same highly con-

nected branch point metabolite often experience di-

vergent selection (Fig. 1C; Fraser et al. 2002; Hahn

and Kern 2005; Bernhardsson et al. 2011; Badyaev et

al. 2015).

Implications of the relationship between
structural and dynamic properties in
metabolic networks

Examination of flux regulation in relation to the

structural properties of deterministic networks pro-

vides a way to understand proximate mechanisms of

phenotypic change from a more global perspective.

Instead of only being able to see where and how

changes occurred with respect to a current pheno-

type, we can begin to understand why certain phe-

notypic changes are recurrent, whereas others are

rarely realized. As such, this approach links micro-

evolutionary and macroevolutionary changes. The

effect of network structure on the delineation of di-

versification opportunities depends on the integra-

tion of regulatory mechanisms into the network

structure. When entire modules of a metabolic net-

work are under the same regulatory mechanism, the

network structure is an emergent property in the

evolutionary change of metabolism. In this case,

the metabolism in the biochemical network is opti-

mized to current abiotic and biotic factors and does

not depend on the topology of enzymes. When there

are multiple regulatory controls within pathways, the

static structure becomes predictive of the potential

for evolutionary change of certain enzymes and com-

pounds, because these regulatory controls target dif-

ferent structural locations to optimize metabolic flux.

Linking the evolutionary stability of changes in reg-

ulatory mechanisms to their corresponding pheno-

typic changes within a deterministic network has

implications for understanding the plasticity of a phe-

notype and its role in diversification. We can predict

both how and when a phenotype should change, as

well as the relative stability of the change. For exam-

ple, establishing topology of the enzymes that are tar-

gets of hormonal signals gives insight into changes in

functional properties of the network in response to

hormonal signaling. Transient properties of hormonal

control, in which hormonal signaling changes in
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response to environmental perturbations (Schulte

2013), can lead to phenotypic plasticity in a meta-

bolic network. Selection on functional properties of

a metabolic network can produce adaptive radia-

tions in functional states (Kitano et al. 2010) as a

result of exposure to more stable environments or

genetic assimilation of hormone production in reg-

ulatory mechanisms (Rissman et al. 1997; Flurkey et

al. 2001; Ellis et al. 2003; Badyaev 2009).

To test our predictions (Fig. 1), intraspecific

changes in regulatory mechanisms need to be com-

pared with interspecific patterns of diversification in

expressed metabolites and enzymes. Determining the

topological locations of changes in flux would re-

quire comparisons of the dynamic properties of the

same metabolic network in different environments

(Almaas et al. 2004; Papp et al. 2004; Price et al.

2004; Reed and Palsson 2004; Lavington et al.

2014). The next step would be to assess the relation-

ship between structural properties of regulatory

controls and evolutionary patterns of metabolic di-

versification. Comparing how the metabolic network

is used across species in a lineage establishes conser-

vation of compounds and enzymes over evolutionary

time; these evolutionary differences should corre-

spond to the structural positions of changes in flux

on the metabolic network.

More work is needed to assess how functional

states of metabolic networks change in multicellu-

lar organisms. Many of the studies reviewed here

examine flux in microbes and the mode of evolu-

tion often differs between unicellular and multi-

cellular organisms. For example, in unicellular

organisms pathways and elements can be gained

independently of their functional properties during

horizontal gene transfers from other organisms

(Lawrence and Roth 1996; Pál et al. 2005; Kreimer

et al. 2008). This mode of evolution can result in

indistinguishable evolutionary patterns to changes

in regulatory mechanisms, because connected com-

pounds would be conserved due to the preferential

attachment of the horizontal transmission of acquired

enzymes to the same initial compounds (Eisenberg

and Levanon 2003; Light et al. 2005), or the di-

vergence among downstream enzymes across spe-

cies is due to the horizontal gene acquisition of

enzymes at the end of pathways (Bernhardsson et al.

2011).

A greater focus on metabolic network divergence

in multicellular species is also an opportunity to

evaluate the dynamics of metabolic networks for var-

iable functional properties. Almost all of the empir-

ical studies discussed in this review examine the

targets of flux control in relation to optimal growth

rate under different conditions (e.g., Ibarra et al. 2002;

Almaas et al. 2004; Almaas et al. 2005; Herron and

Doebeli 2011). Different dynamics of regulatory con-

trol may characterize other functional states, such as

in floral pigmentation (Rausher et al. 1999; Rausher et

al. 2008) and insect flight performance (Eanes et al.

2006).

Establishing how the topology of regulatory mech-

anisms in deterministic networks is linked to func-

tional and evolutionary changes gives us a

quantitative perspective on the underlying mecha-

nisms of phenotypic change and stability. Not only

can we pinpoint the specific differences between phe-

notypes, but we can also assess both the magnitude

of these changes and possible sources of the variation

based on differences across functional states in rela-

tion to the structure of their deterministic network.

In short, linking structural and dynamic properties

of genetic, protein, and metabolic networks offers an

opportunity to apply a predictive structure to ob-

served evolutionary patterns.
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